以下教程都是在MacOSX编译运行通过。使用cmake和make编译
以下的编译方法是把FaceDetect测试程序也编译了,而测试程序是依赖opencv的,所以,在这之前,确认opencv是否安装
修改include/common.h,修改38行
#ifdef SEETA_EXPORTS
#define SEETA_API __declspec(dllexport)
#else
#define SEETA_API __declspec(dllimport)
#endif
为
#if defined _WIN32
#ifdef SEETA_EXPORTS
#define SEETA_API __declspec(dllexport)
#else
#define SEETA_API __declspec(dllimport)
#endif
#else
#define SEETA_API
#endif
增加CMakeLists.txt,内容如下:
cmake_minimum_required(VERSION 3.3)
project(seeta_facedet_lib)
# Build options
option(BUILD_EXAMPLES "Set to ON to build examples" ON)
option(USE_OPENMP "Set to ON to build use openmp" ON)
# Use C++11
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
message(STATUS "C++11 support has been enabled by default.")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -msse4.1")
# Use OpenMP
if (USE_OPENMP)
find_package(OpenMP QUIET)
if (OpenMP_FOUND)
message(STATUS "Use OpenMP")
add_definitions(-DUSE_OPENMP)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_EXE_LINKER_FLAGS}")
endif()
endif()
include_directories(include)
set(src_files
src/util/nms.cpp
src/util/image_pyramid.cpp
src/io/lab_boost_model_reader.cpp
src/io/surf_mlp_model_reader.cpp
src/feat/lab_feature_map.cpp
src/feat/surf_feature_map.cpp
src/classifier/lab_boosted_classifier.cpp
src/classifier/mlp.cpp
src/classifier/surf_mlp.cpp
src/face_detection.cpp
src/fust.cpp
)
add_library(face_detect SHARED ${src_files})
set(facedet_required_libs face_detect)
if (BUILD_EXAMPLES)
message(STATUS "Build with examples.")
find_package(OpenCV)
if (NOT OpenCV_FOUND)
message(WARNING "OpenCV not found. Test will not be built.")
else()
include_directories(${OpenCV_INCLUDE_DIRS})
list(APPEND facedet_required_libs ${OpenCV_LIBS})
add_executable(facedet_test src/test/facedetection_test.cpp)
target_link_libraries(facedet_test ${facedet_required_libs})
endif()
endif()
头文件
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "face_detection.h"
opencv头文件主要用来加载图像,face_detection.h是人脸识别的主要程序。
加载人脸识别引擎
seeta::FaceDetection detector(‘seeta_fd_frontal_v1.0’);
设置最小人脸大小
detector.SetMinFaceSize(40);
这个根据实际情况调整,图片中,人脸越大,这个值也越大,因为这个值越小,人脸识别速度越慢。
识别图片中的人脸
std::vector<seeta::FaceInfo> faces = detector.Detect(img_data);
在这之前,需要对图片进行处理,这里略过
输出人脸识别的结果
for (int32_t i = 0; i < num_face; i++) {
face_rect.x = faces[i].bbox.x;
face_rect.y = faces[i].bbox.y;
face_rect.width = faces[i].bbox.width;
face_rect.height = faces[i].bbox.height;
cv::rectangle(img, face_rect, CV_RGB(0, 0, 255), 4, 8, 0);
}
faces[i].bbox.x; faces[i].bbox.y;是人脸的左上角坐标。faces[i].bbox.width;faces[i].bbox.height;是人脸的长和宽。
seetaface的确是个很好用的人脸识别库,调用、编译都很简单,但是由于文档的缺少,所以刚开始看的时候,会比较乱,不知道如何下手。本片文章主要介绍了FaceDetect的使用,接下来我会讲解如何识别人脸的特征点,也就是嘴、鼻子、眼。敬请期待。
转载自我的博客:http://www.bugcode.cn